TGS NOT

BY

Er. Lalit Sharma **Arun Garg** Arun Garg

Ex. Lecturer Govt. Engg. College Bathinda Gold Medalist College Bathinda Gold Medalist Physics Faculty Ranker's Point, Bathinda **Physics Faculty Ranker's Point, Bathinda**

B.Tech (Electrical) M.Sc. Physics

Class:10+2 Unit: III Topic: Magnetic Field due to current

SYLLABUS: UNIT-III-A,B

Concept of magnetic field, Oersted's experiment, Biot-Savart law, magnetic field due to an infinitely long current carrying straight wire and a circular loop; Ampere's circuit law and its applications to straight and toroidal solenoids; Force on a moving charge in uniform magnetic and electric fields, Cyclotron; Force on current – carrying conductor in a uniform magnetic field. Forces between two parallel current- carrying conductorsdefinition of ampere; Torque experienced by a current loop in a uniform magnetic field, moving coil galvanometer- its current sensitivity and conversion to ammeter and voltmeter.

Current loop as a magnetic dipole and its magnetic dipole moment; Magnetic dipole moment of a revolving electron; Magnetic field intensity due to magnetic dipole (bar magnet) along the axis and perpendicular to the axis; Torque on a magnetic dipole (bar magnet) in a uniform magnetic field; Bar magnet as an equivalent solenoid, Magnetic field lines' Earth's magnetic field and magnetic elements; Para-dia and ferro-magnetic substances with examples, Electromagnets and permanent magnets.

©

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of the publishers.

Q.1. Define magnetic field strength B? Units? Dimensions?

Ans. $B \rightarrow M$ agnetic flux per unit Area

 B = S.I. Unit: B =
= (wb/) Dimensions: - = q(x -) = Dimensions of, B = ! "# - = q(x -) = sin 90 \$ % & '() *+ = B 1 tesla = Where , → magnetic flux A → Area B = \$ %.& . / 0 ,

Magnetic field strength can be defined as Force acting on unit charge moving with unit velocity perpendicular to magnetic field.

1

Ans.

 $= q(\vec{V} \times \vec{B})$

Case-I.

$$
\vec{f} = q(\vec{V} \times \vec{B})
$$

$$
\vec{f} = qVB \sin 0
$$

$$
f = 0
$$

 $||\vec{B}, \theta = 0$

Whenever charge moves parallel to magnetic field, force acting on charge is ZERO

 Case-II. $\Theta = 180^{\circ}$

 $f = q(\vec{V} \times \vec{B})$

 $f = q \vee B$ Sin 180

$$
f = 0
$$

Whenever charge moves antiparallel to magnetic field, force acting on charge is ZERO

Case-III. $\Theta = 90^{\circ}$

 $f = q(\vec{V} \times \vec{B})$

 $f = q \vee B$ Sin 90

 $f = q \vee B$

 f_{max} = q.V.B

 $N \sim 1$ \vec{V}

+

 \vec{B}

 \overline{a}

 \overline{a}

Force is max whenever charge moves \perp to magnetic field

Direction:-

 \vec{f} is normal to \vec{V} and \vec{B}

 \vec{f} \vec{f} is inwards as per right hand screw rule

Explain Biot - Savarts Law? $Q.3.$

Direction of $I \, \overrightarrow{dl} \, x \, \overrightarrow{r}$ is inwards as per right hand screw rule

5

Q.4. Use Biot Savarts Law to find field at the centre of ring of radius r carrying current I.

Ans. Step 1.

Apply Biots Savarts Law for small elements JK

$$
d\vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{I \frac{dI}{dx} \vec{r}}{r^3}
$$

$$
dB = \frac{\mu_0}{4\pi} \cdot \frac{I \frac{dI r \sin 90^0}{r^3}}{r^3}
$$

$$
= \frac{\mu_0}{4\pi} \cdot \frac{I \frac{dI(1)}{r^2}}{r^2}
$$

$$
dB = \frac{\mu_0}{4\pi} \cdot \frac{I \frac{dI}{r}}{r^2}
$$

Step 2.

Total field at 0 i.e. at centre of ring

Integrate both sides

$$
\int dB = \int \frac{\mu_0}{4\pi} \frac{I \, \text{d}I}{r^2}
$$

$$
= \frac{\mu_0 I}{4\pi r^2} \int dl
$$

$$
= \frac{\mu_0 I 2\pi r}{4\pi r^2}
$$

$$
\boxed{B = \frac{\mu_0 I}{2r}}
$$

$$
\frac{\text{For arc of angle } \theta}{4\pi r} \cdot \left(\frac{\theta}{2\pi}\right)}
$$

$$
\frac{\text{For full circle } \theta = 2\pi}{B_{\text{circle}}} = \frac{\mu_0 I}{4\pi r} \cdot (2\pi)
$$

$$
B_{circle} = \frac{\frac{\mu_0 I}{4\pi r}}{4\pi r} \cdot (2\pi)
$$

$$
B_{circle} = \frac{\mu_0 I}{2.r}
$$

Q.5. Use Biot Savarts Law to find field due to current carrying conductor of finite length?

Ans. $d\vec{B}$ = μ_0 $rac{\mu_0}{4\pi}$. $rac{\overline{I} \overline{dl} x \overline{r}}{r^3}$

Step 1.

Field due to I $\overline{d}I$

$$
d\vec{B} = \frac{\mu_0}{4\pi} \cdot \frac{I \frac{d\vec{l} \times \vec{r}}{r^3}}{\frac{\mu_0}{4\pi} \cdot \frac{I \cdot dl \cdot r \cdot \sin(\theta)}{r^3}}
$$

$$
= \frac{\mu_0}{4\pi} \cdot \frac{I \cdot dl \cdot r \cdot \sin(\theta)}{r^3}
$$

Step 2.

Integrating both sides

Mathematical

Special Cases:

Case-I: infinite conductor (at centre)

$$
\Phi_1 = \Phi_2 = 90^\circ
$$
\n
\n
$$
B = \frac{\mu_{0,I}}{4\pi a} (\sin 90^\circ + \sin 90^\circ)
$$
\n
\n
$$
B = \frac{\mu_{0,I}}{4\pi a}
$$

Case-II: Infinite conductor (at end)

Case-III:

 Length of the conductor is finite say L and point P lies on right bisector of conductor, then $\Phi_1 = \Phi_2 = \Phi$

$$
\sin\phi = \frac{L/2}{\sqrt{a^2 + \left(\frac{L}{2}\right)^2}} = \frac{L}{\sqrt{4a^2 + L^2}}
$$

$$
\beta = \frac{\mu_{0,I}}{4\pi a} \left(\sin\phi + \sin\phi\right)
$$

Q.6. **Compare Electric and Magnetic Circuit?**

Electric Circuit Ans.

- 1. What causes current in the Electric Circuit?
- Ans. Emf (Electro motive force)

Magnetic Circuit

- 1. What causes magnetic flux in magnetic circuit?
- Ans. Mmf (Magneto motive force)

- 2. Current, I
- 3. Resistance, $R = \frac{l}{\sigma.A}$ Conductivity of material
- 2. Magnetic flux, φ
- 3. Reluctance, R_e {opposition to flow of magnetic $flux$ }

$$
R_e = \frac{l}{\mu.A}
$$
\nPermeability

Iron has high permeability wood has low permeability

$$
\mu = \mu_0. \mu_r
$$
\n
$$
\downarrow \qquad \qquad \downarrow
$$
\n
$$
[1,2,3,4,......]
$$
 is relative permeability

 $\mu_0 \rightarrow$ permeability of free space and $μ_0 = 4π × 10⁻⁷$ in SI units.

4. H, Magnetising field intensity =

$$
H = \frac{m.m.f}{l} = \frac{NI}{l}
$$

 $N \rightarrow$ number of turns $l \rightarrow$ length of magnetic circuit

4. E , Electric field intensity =

 $E = \frac{V}{l} = \frac{e.m.f}{length}$

Electric Circuit

$$
5. \t\t J = \frac{I}{A}
$$

Current density

6. Ohm's Law

$$
V = IR
$$

$$
I = \frac{V}{R}
$$

$$
= \frac{e.m.f}{R}
$$

Magnetic Circuit

5. Magnetic flux density

$$
=\frac{manetic flux}{Area}
$$

$$
=\frac{\Phi}{A}
$$

 ϕ

 \vec{B}

$$
= \frac{m.m.f}{R_e}
$$

$$
\Phi = \frac{N.I}{R_e}
$$

$$
\Phi = \frac{N.I}{R_e}
$$

$$
=\frac{N.I}{\left(\frac{l}{\mu A}\right)}
$$

$$
\frac{\Phi}{A} = \frac{N.I\mu}{l}
$$

$$
B = \frac{\mu(N.I)}{l}
$$

[H = $\frac{N.I}{l}$ is *m.m.f.* per unit length]

 \boldsymbol{B} $= \mu H$

Magnetic flux density depends upon material but H does not depend on material.

Ans. $m.m.f$ in part PQ is = H.dl

" Total m . m . f in closed loop"

 $=$ \oint H.dI

"Total m . m . f in a closed loop is equal to total current contained".

Q.8. Use Ampere-Circuit Law to find magnetic field due to current carrying infinite conductor.

Ans. Step 1.

 Apply ampere circuit law in loop, Total m.m.f. in closed loop = Total current contained

i.e.
$$
\oint
$$
 H.dI = I

Step 2.

Take $H \rightarrow$ constant

 $H. \oint dl = I$

H.2
$$
\pi r
$$
 = I (As $\oint dl = 2\pi r$)

$$
H = \frac{I}{2\pi r}
$$

$$
B = \mu_0 H
$$

$$
\frac{\mu_0}{\mu_0}
$$

$$
B = \frac{\mu_0 I}{2\pi r}
$$

Q.9. Find magnetic field at centre of infinite solenoid carrying current I.

Ans. $N \rightarrow$ total no. of lines

 $L \rightarrow$ total length

$$
n \rightarrow \frac{N}{L} = \frac{no.of turns}{length}
$$

Proof:

Step 1.

Make ampere circuit loop

Apply ampere circuit law for loop ABCD

 $\oint H. dl = N.I$

ABCDA

Step 2.

Ampere circuit loop sub parts

 $\int_{AB} H. dl + \int_{BC} H. dl + \int_{CD} H. dl + \int_{DA} H. dl = N.I.$ $\int_{AB} H \cdot dl + 0 + \int_{CD} H \cdot dl + 0 = N.I.$ $2 \int H. dl$ = NI $2H\int dl$ = NI $2HL$ = NI H $=\frac{N.I}{N}$ 2.L H_{total} = 2. $\left(\frac{N.I}{2.L}\right) = \left(\frac{N}{L}\right)$ $\left(\frac{N}{L}\right)$. I

Step 3.

$$
H_{total} = nI
$$

Step 4.

B =
$$
\mu_0 H_{total}
$$
 (for air)
\n
\nB = $\mu_0 nI$ (for air solenoid)
\n
\nB = $\mu_0 \cdot \mu_r \cdot nI$
\nRelative permeability material

19

- Q.10. Use ampere circuit law to find magnetic field in and around a toroid?
- Ans. Case I.
	- Inside Toroid (iron part)

